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THE PRESENT STATE OF THE QUESTION OF TURBULENT
ELECTROCONDUCTIVITY IN PLASMA AND CERTAIN QUESTIONS
RELATED TOC THE DYNAMICS OF THE MAGNETOSPHERE.I

V. A. Liperovskiy

ABSTRACT. Phenomena related to plasma turbulence in
the circumsterrestrial region of space are considered, and
concepts related to turbulent electroconductivity are
surveyed. Laminar and turbulent electroconductivity of
a plasma are discussed. Relations for a turbulent current
are estimated, and theoretical concepts related to a
plasma in a strong electric field are presented.

" Introduction

The pre§ent survey deals with certain phenomena related to plasma 1%
turbulence in the circumterrestrial region of space. According to present—
day concepts, circumterrestrial space, due to the Earth's magnetic field, is
physically speaking a gigantic plasma trap which intercepts the flux of plasma
coming from the Sun. An investigation of the structure and dynamics of this ‘
geomagnetic plasma trap has been conducted for a relatively long time, and it
has picked up momentum with the development of direct means of space research,

such as artificial satellites and interplametary space probes.

The theoretical concepts of the structure and dynamics of the geomagnetic
cavity until recently were based on the laminar model of circumterrestrial

plasma. These concepts are completely analogous to the concepts of laminar

*
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stable plasma involved in thermonuclear reactions which held sway over the

minds of scientists for over a decade.

When it had become clear during recent years that the numerous forms of
instabilities in thermonuclear plasma, discovered theoretically and experimen-
tally, leave hardly any hope for producing laminar high—temperature plasma,
there has been a strong outburst of research activity in the area of turbu-
lent plasma. The objective of that research has been to predict, explain,
and describe plasma phenomena and properties which appear as a result of

instabilities.

The mathematical apparatus used by theoreticians in this field by and
large corresponded to the so-called weak nonlinearity approximation in which
— when oscillatory motion was discussed — nonlinear terms in the pertur-
bation would remain. Thus, it was possible to use expansions in powers of 12
the amplitude of perturbation fields arising with the development of insta-
bilities. The present state of nonlinear plasma theory makes it possible to
describe weakly turbulent quasistationary states of plasma resulting from its
instabilities, and to shed light on the radically new effects occurring in
those states. Those include, for example, collective interactions, changes
of dispersive properties, anomalous diffusion, wave flux braking.

Studies of cosmic plasma proceeded in parallel with those investigationms.
It is obvious that, in the rarefied plasma occurring in circumterrestrial
space, many phenomena can be described using laminar concepts. However, it
is clear that an increasingly wide range of phenomena in the physics of
circumterrestrial plasma can be interpreted only on the basis of concepts
involving a developed turbulence, to say nothing of the fact that the boundary
region between interplanetary space and the magnetosphere of the Earth has a
pronounced quasistationary turbulence to which laminar concepts are hardly

generally applicable.

A separation of turbulent regions, and a determination of the level of

turbulence, are also important in solving problems of the acceleration of



particles in the magnetosphere and in understanding the dynamics of the

Earth's radiation belts, auroras, and other phenomena.

Swift in [1] has proposed considering the region of the magnetosphere
close to the zone of auroras as a region of ionic-sound turbulence. The

following experimental data:

1) the fact that electrons emitted during auroras gain their energy /3
directly during their emission [2],

2) during auroras, currents of intensities up to 105 A appear in the
ionosphere (it is not proven where they are formed),

3) the presence in the aurora zone of a high level of ultralow-frequency

waves indicated by both terrestrial and satellite data, according to

11,

can be explained if we assume that in the Earth's magnetoSphere a separation
of charges may occur caused by the electric fields perpendicular to the geo-
magnetic field. In an almost collision-free plasma of the magnetosphere,

the electric fields produce currents along the magnetic force lines, uniting
space charge regions across the conducting ionosphere. When the currents are
of sufficient strength, there arises in the plasma ‘an ionic-sound instability
(manifested .on the ground as ultra-low frequency noise) which results in the
appearance of "collective interactions" of particles with waves, and conse-
quently in an anomalous resistance of the magnetosphere plasma. As a result
of this type of turbulence in a plasma which is collision free (in the sense

that there are no pairwise collisions) electrodynamic heating of electroms to

kilovolt energies may take place. A flux of such "hot" electrons is

obviously capable of producing auroras and other accompanying phenomena.

It should be emphasized that the paper referred to, written in 1965,
made use of the concepts and estimates related to turbulent flow which were
deveioped by Buneman [3] in 1959 when the theory of turbulent plasma was in
its infancy. From the vantage point of present concepts about turbulent

plasma, one can say that [1] is accurate only as to its qualitative, but not



quantitative (even in its estimates), concepts about the deceleration of

electronic streams colliding with ionic-sound pulsations of high amplitude.

The estimates of turbulent electroconductivity of the type Q= SOCO?:' 14
comet , that were used by Swift, from the present point of view may be applica-
ble only to the very beginning of the development of an instability in an

isothermic plasma with a current.

In quansistationary states which may last very long the turbulent
electroconductivity @e1/E, and the current density is constant within a wide
range of variation of the electric field if E is smaller than some E**, For
stronger fields i““@l(agq_s‘ra&/@ , respectively.’

For this reason it is timely and advisable to make a survey of present
concepts related to turbulent electroconductivity and an application of these
concepts to both the problem posed in [1] and to a number of other problems
occurring in the physics of the magnetosphere in which it is necessary to
know the function SQE) .

§ 1, Laminar and Turbulent Electroconductivity of Plasma

-

The questions related to the turbulent electroconductivity of plasma have

been quite intensively studied during recep}wyegrgibziﬁ;gpmbgy;gf'anthOFSL'
[4 - ll]o

The difficulty of the problem consists primarily in the fact that the
existence of quasistationary turbulence in a constant electric field is
apparently of short duration. It is possible that there are several quasi-
stationary turbulent states, each of which is characterized by its own time

scale.

Therefore, if one is interested in the anomalous resistance of plasma in

a strong electric field (having in mind any kind of formula or even an estimate,



replacing & , determined by interactions), it is necessary to understand
clearly that the quantity S (turb.) depends on the field & in which the
plasma is located, and on the time. Therefore, we clearly have to speak

St

directly of a function giTiX‘(j%) . In addition, since the turbulence level
depends to a large extent on the boundary conditions, the function 5‘=s (&) /5
will also substantially depend on them. In this case, the field may § must

be understood as the real field at each point. This field may differ signifi-
cantly from the initial "external" given field at £ = 0. It must be noted

that here the relationship £ =4 (E) refers to an average taken over a time
interval many times 1ongerrthan the period of oscillatioms 2ﬂ/ZO,; for the

jonic sound wave.

It must be emphasized that we shall consider two cases: involving
nonisothermic plasma Ve »» V¢ and isothermic plasma \e = V¢. From our point
of view, the first case is of greatest importance, since in the second case
the turbulization of the plasma in the electric ion invariably results in a
lack of isothermicity, and if we are interested in longer turbulence times,

we shall deal only with a nonisothermic plasma.

Thus, suppose that an external electric field E is applied to a
quasineutral plasma consisting of two kinds of electrons and ions with densities
Ne=N:"N,. For simplicity, we shall consider the plasma to be homogeneous
and infinite in extent, and the £ field to be homogeneous. If the field is
sufficiently small, the plasma is 4characterized by the usual collision resis-
tance. Just as was done, for example, in [12], to get the feel for things we

shall give an elementary analysis for this simple case.

Under the influence of the electric field, the electrons gain a directional
velocity with respect to the ions, and should the collisions be absent the
electron velocity would grow linearly with time, :-.?_-'—“_g-k; . Assuming that
during each collision an electron completely loses its velocity, we obtain the

average speed



= 2E
ru, = T (1.1)

0l

/

where T, =14 / \)d is the mean time between two electron collisions.

e
We shall estimate the frequency of collisions. Since we are in fact
considering collisions with a substantial change of the momentum, in this type

of collisions potential energy @'/% is on the order of the kinetic energy

. k&
MmUY/, whence ¢ & 222 , and the cross section is.

6 = ot & 4nel | (1.2)

mtyu<
Then the collision frequency is
4uned -
Vep = hoE=4mned (1.3)
mis

When the velocity of electrons is much smaller than the mean thermal velocity

U << ‘\:'rg,'we can substitute Y~ in Equation (1.3) instead of Vyg to obtain

. mbmnet | Wl e
'QCL a - 3\
| miv2 “4an Sy anln l¢)§

(l., m?‘) 2

This quantity does not depend on the field B and the velocity 'u « More

accurate calculations yield

3'\)",”,, Ol (1.4)
% arnd),



— —
where )ae.“ \/4‘“3 n/Me ,YU -is the number of electrons per unit volume, . 17
Ae~ 'D‘Tq‘ /Wpe 1s the Debye electron length, &nm A. is the so-called Coulomb
logarithm ( o A~ aLO>

Substituting Qz‘- according to Equation (1.4) in Equation (1.1), we

obtain

U=4¢ eE 4unde
2 Mg .

and consequently, Ohm's law in the laminar case is

o _ *E | 4 nXe (1.5)
rewsEE 5 4R - O E.

.».‘1‘

where

6‘ C*)PQ- CD;.Q- im V\)\so,;‘i-;
1am\ S'ﬂ"ﬂ 3’“‘ CQ?‘%I\

-

It may be stated that in the laminar case the force acting on an electron,
e E , is balanced by the force of "friction" against ions equal to the ‘loss

of momentum per unit time

Jop = B = 2% L 2%,

i.e.,

eE= Qm:.‘llﬁéa‘: o (1.6)

Now we shall turn to the question: up to what values of E is the linear /8
Ohm's law (1.5) valid? It is easy to see from Equation (1.6) that the linear



Ohm's law is valid as long as Ve = tomyt , i.e., under the condition W «Vrq .
When U > VTe , we must replace U~ in Equation (1.3) with U, and then ¢ is

no longer constant, and depends on the directional velocity as
Qei ~. xa; '

The above relation means that the force of "friction" of an electron against

ions is 2m UVa ~ A/UY, and it falls off with increasing velocity .

Thus, the force of "friction" of an electron against the ions for AL «
VUte, is directly proportional to " . For UnVye » the force of "friction"
passes through a maximum; for 'u.»\f-r,, it falls off.

Figure 1 a.

E o
The electric field D for which \2‘? =t ,

substituting M*2"Jvq in (1.6), and according to Equation (1.3), Es‘&

is easy to estimate by /9

2e/)% . More accurate calculations result in a slightly larger coefficient
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If the electric field E > E D dynamic equilibrium of the electric field
€ and the forces of frict:}.on due to pair-wise collisions is impossible. If
one only considers pair-wise collisions, then for £ 2, ED all the electrons
in the plasma in an electric field should be freely accelerated, and the
current should grow linearly with time. However, in practice this does not
occur since an ionic-sound instability occurs in a plasma for T& > 1: - The
increasing ionic~sound fluctuations interacting with the particles decelerate
them, i.e., the dominant role begins to be played by collective interactions

instead of pairwise electron—-ion collisionms.
In practice, in a nonisothermic plasma the instability of ionic-sound
waves begins for A~ C3 (where Cg is the speed of the ionic sound), i.e.,

for fields much smaller than E:D 3

§ 2. Estimated Relationships for a Turbulent Current

The instability involving ionic-sound waves arises when the electric
field E> E¥* is such that the velocity of electrons amounts to ‘XAM;—.  C5(a

.more accurate expression can be found, for example, in [5]). Then

Later as a result of the development of instability, a quasi-statjonary ionic-

sound turbulence is formed. Thus for sufficiently long times 2 <>> v/ C«J“;'..

for fields
* e e i ]w.m
EsE -“Eb ”yﬁs:" X2 v (2.1)

the plasma is turbulent, and as shown by theory, within a certain interval

E'< E & E", the current density does not depend on E, i.e., we have a

{10



plane current-voltage characteristic, and G~ 4/%=. As an example let us con—

sider a plasma of the Earth's magnetosphere in the aurora zone:

9 2

- - <
De= 10fen™, T o 1ke' = 1.6°10™ ergs, X,=5,5.10%cn’,

Ey 1.2.001 Ve, E =8.10"18 v/cn
As we know magnetospheric electric fields along the magnetic lines of
force are determined by the potential difference ~ |OWv at a distance of
~{0000 km, i.e., they are on the order of ~10"5 V/cm. Therefore, in particular,
the magnetosphere currents along the lines of force in the aurora region may /11

certainly have a turbulent character.

Thus, suppose that there is a field with E» EY in a plasma, and the
current velocity is Me 2 Cs. Then an ionic-sound instability begins to
develop in the plasma. The accumulated ionic-sound fluctuations of large
amplitude interact almost elastically with a majority of plasma electroms, by
and large participating only in an exchange of momentum. The energy exchange

is insignificant.

— O U g, — - —

< Te
U")QS"' ™.

¢ ¢

CS min = 63 .
Figure la. Distribution functions of electrons and ions in the
current plasma.
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Figure 1b. The variance curve for ionic-sound waves.

/12
A wave characterized by () and ¥ is triggered by the so-called resonance

electrons whose velocity in the direction 3 is equal to'Og‘, =wr/K, i.e., we

have a resonance condition w = Kﬁ'. The activation or the attenuation of

waves may be understood to be a result of a large number of incidents involving
Cherenkov emission and an absorption of ion-sound plasmons by resonance
electrons. , Let us clarify why the interaction of electrons with ionic-sound
‘plasmons occurs almost elastically — to be more precise; why it occurs with

conservation of the energy of electrons in the zero approximation with respect
to the parameterw /K iJ,.

Since in the process of the interaction of electrons with ionic-sound
waves W = KU, and the phase wave velocity is equal to C¢ '-'\Tnm, the
resonance electrons moving with a velocity on the order of thermal velocity
emit or absorb waves with #& which is orthogonal to U within. an accuracy of
Vmeoim, as compared toc. The velocit'y increase a7F, is obviously parallel to

the wave vector, i.e. » perpendicular to '&F » which means that in a first
approximation the energy increase is 0.

11



Since the electrons that gain momentum in the electric field lose it due
to scattering from the waves, in the last analysis the wave amplitude increases
to a value such that the force of friction of electrons against waves balances

the action of the electric field.

If it turns out that in this state the current velocity noticeably
exceeds the critical value, then the noise and the force of friction will
increase as before, and the velocity "M will fall off until it reaches a value

near M, -

As a result, within a fairly wide range of electric field values the

current density remains almost constant, and O ~ I/E,

Following [5] we shall write the conditioné for the equilibrium of forces

acting on the electrons and ions.

From these conditions one can obtain approximate information about the
order of magnitude of the energy of ionic~sound plasmons in a quasi-stationary

state (assﬁming it exists):

) —~enE .T—SEXQ(E)\(.—: d¥, (2.1)
enE PS’E Y. (ONe JE, (2.2)

Here we took into consideration the fact that, since the total momentum of

the ionic-sound wave is P - Si’f \Iz ¥, then for electroms
?p S“ Wf) lv‘#& (%)& vy
=\ (57 ) de= 2 AC .

An analogous relation is also valid for ions. It is necessary to emphasize
that even though (2.1) and (2.2) imply B

12



S(Y; + Y‘)“am‘?j =0but Y, -‘Ye_

it by no means follows in a general case.

Let us now consider the density equilibrium of ionic-sound plasmons. The
kinetic equation for plasmons is obviously of the form (in a homogeneous

plasma)

(2.3)

| g
%ﬂfﬁ; 35 v N, - Xa("z)‘\(si @K -

Y
In this equation the term QW corresponds to the case when the in-
‘ S 7 Ny comres?

homogeneity of plasmon gas in space is important, and it describes a change of
}(z due to the movement of quasi-particles toward the boundary of the turbulent
region with a group velocity Cy = Rw/R ¥,

An estimate of this term yields

Y(.S. =S '\(&‘ =W lc‘f- \(is , (2.4)

where a is the size of the inhomogeneity.

For the present, we shall neglect the term (2.4), considering the charac~

teristic lateral dimension of the plasma to be sufficiently large. The first

5 .
term on the right in (2.3), \‘g N s corresponds to a linear generation of waves

by plasma electrons, and is determined by the form of the distribution function

-“. In this case for a Maxwell distribution function
Q v (F-T2
oS4 o X {~ 3 maximum value of x‘_
T TGaed) TUPL and
l\n-ll ‘
\6 e= -— (-Oo& where fu,~c5 \lidm.-.

13
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When the time deveiopment of the process is considered, in the initial phase
of development of an instability Xe = K._ s= e (Me/Tyve), the increment,

proportional to @Q,/'a\r) , decreases almost to zero due to a distortion of

the electron distribution function resulting from an interaction with waves.

Finally, the last term in (2.3) corresponds to two processes: X‘ =
. X‘res . Kiﬂe's corresponds to a linear absorption of waves by resonance
ions (having a velocityVU: > ¢¢) and a nonlinear scattering of ion-sound waves

off the ions, which can be estimated as [12, 5]

LW wiNz ouz
X‘ *‘Ja‘.——.‘-—— = (U l\ S e ..

(2.5)

As far as a linear absorption of waves by resonance ions is concerned, then
within only a framework of quasilinear effects accordint ot [5] we have (U

is the density of resonance ions, T' is the temperature)
7.- » R .
X'res * (2) h‘/T R (h "-W\*) L
;a_¥(h|-r‘)= x;es: J\T“-H. 4*5&‘&2.»" SO‘T\-'T&'-S/z

</2 ' ofc. - T TR

e T e . (2.6)
X\'. ‘ -2/? ) !

res ™ .
Thus, X;'es decreases with time as-£**/¥. Therefore, it is necessary in the
first place to consider a process with a nondecreasing increment, that is,
‘nonlinear scattering by the ions. It must be noted that the scattering
results primarily in a change of direction of the momentum of a quasi-particle

and in an isotropization.

Furthermore, when considering nonlinear scattering by ions, Equation (2.6).
in turn loses its validity, since one must take into consideration an increase

in the number W of resonance ions and their heating, along with heating of

* Translator's Note: nl designates nonlipear. |

14
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the basic nonresonance mass of the ions.

These latter processes, incidentally, result in the appearance of escaping

ions.

If one assumes that the basic contribution to the quantity \‘i is made by
<

nonlin for a boundless plasma in

nonlinear scattering by ions, and sets ¥ =¥

the quasi-stationary case, one then obtains

?\6@=X‘='K‘n_1 = (2.7)
From Condition (2.2) we have, using K"' ‘- x‘nl‘ /17
wi W WA
ShE =Y T T Ty -

Hence we find that in the quasi-stationary turbulent mode in regions II and

III (Figure 2) the total energy density of turbulent ionic-sound pulsations is

’\.0’ = “V\T‘. ( E /m )‘/f (2.9)

. | _ T = o (EATEE )13 v -
In this caseKQ:an = Co?‘ }J/ th_“?fm@/‘f‘b-!) , i.e., \(o._- and xnonlin
increase with a growing field E.

It is necessary to point out here that simple physical considerations

(which are confirmed by detailed calculations) make it necessary to consider

separately two intervals of the electric field values.

If one considers a change in the picture of the ‘turbulent quasi-stationary
state depending on E, one can see that from E=E® to E = E®® the turbulent
energy varies as A,y ~ (@ .

15



i i ement e .
In this comnection, we have the iner ¥ i} nonlin

Here ¥'¢ , which remains equal to Y"' with an increase in E, increases
due to a decrease in the quasi-linear effect, i.e., a decrease of the

reversing action of ionic~sound waves on the electron distribution function.

[ ] % ,'u(
The increase of ¥ a continues up to'f,‘“ (—U‘n' Q‘/'\S‘,_ Wo; ;_}:;“ s corres-

- ~nt
ponding to E = f£**. Here in the interval B < E < E" " the velocity u is
practically constant and equal to M < €&y. Consequently, \=ents =ctom¥d.

The corresponding section of the plane current-voltage characteristic (II)
for the plasma is shown in Figure 2, Section I in the diagram corresponds to

the usual conductivity in the nonturbulent plasma.

i e e et S s e ¢ N o A e

.Figure 2

We note, incidentally, that the usual semi~qualitative considerations are not
applicable in Section II. These arguments yield an estimate for the turbulent

electroconducitivity, when one writes:

16
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1=GE, G =wi/8TYsy

Ngp =V~ B

= ;r_‘-_-_w?.b“ R

and, consequently,j ~ \,ré Considerations of this type are applicable only
for large values of £ +» E™%.

The inapplicability of the above considerations in Section II is related
to: (a) the strong anisotropy of the iomic-sound turbulence, and (b) the
strong reversing effect of turbulence on the portions of the electron distri-

bution function that are responsible for the buildup of waves.

It should be emphasized that the deceleration of the electron stream is
most effectively achieved by waves that propagate normally to the stream, and.
the energy density of such waves in Section II is considerably smaller than
the energy density of the waves p'ropagéting in a direction parallel to the

electron stream.

An increase in E is accompanied by an increase in both the turbulent

energy LuJyes \JE and the isotropic turbulence.

The velo‘city_ A is maintained near a value WU = Cg with increasing E,
because the equilibrium of forces (2.1) acting on-the electrons is maintained
due to an increase of X"tu'\lé‘t, caused by a decrease in the quasi—lineai: effect,
and due to an increase of the turbulence isotropy (i.e., due to an increase

in the relative number of waves propagating normally to the current).

The plane current-voltage characteristic continues up to values E = c".
£ is determined by the field at which the energy density of the noise \uJ™,
needed to keep U close to N ™= Cls s becomes so large that

N e N | v T (2.8)
Bab o Yoame = Oty

17



Then to maintain noise at the necessary level there must be an increase in

the linear increment due to an increase of the current velocity. For

E >EY* the current-voltage characteristic ceases to be planar (Section II

in Figure 2).

Let us consider the condition Xnonlln Klln g’ Ssubstituting

™ .'U)"' X X g ‘/2
fawep B | TSN (T’m

we shall obtain

E¥%- e fAmnT, .

(2.9)

As far as the current density in the region E > E“x is concerned, it

can be found from the following consideratioms. Considerlng that {Q_

- ——y g .  — k 3
:.F.QP‘ e’ setting ‘X?-_.f‘ K,nonlin’ we obtain

’ /2 (2.11)

Writing Ohm's law in the usual form for a longitudinal current, we obtain

T-68"
G‘ m. 5 aenecyg n
() Grwryve

3 V- »
Thus, for = > € * ¥ we have G",..a A /\’ . We shall give some estimates of

xx
E as applied to the Earth's magnetosphere. Since in this case ng = 10
3, Tu= (14104) eV, we £ind that §*” =2¢0-(2%6)v/cn,

1I+5

18
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Near the Earth, where?\ - 104cm for WCE"XkeV EE‘I- 2,1079 V/cm.
Measurements of the electric fleld 1n Earth's magnetosphere give, for instance,
E=3.10~% V/em . [48]

Thus we can see that in fact both Section II and IIT may be realized in

the magnetosphere.

The quasi-~statiomnary turbulent states, described here, are in addition
characterized by a constant growth of the temperatures of the electron and
ion gases. These processes are determined, in addition to the equilibirum

conditions, by the following equations [5]:

e»‘E-ué%’& 3 (Pesp)

A &P SX‘;\{ °° d“ (2.13)

(P..' and Pgq are the pressures of the ion and electron gases, respectively), i.e.,

roughly speaking, the heating is proportional to the time.

A detailed analysis, done in [5, 8] shows that after a sufficiently long

time the ratio Vo /Ty tends to a constant on the order of 10.

The questions related to the escaping electrons and ions remain to a large
‘extent unexplained. Within the framework of the quasi-linear theory, the phen-
omenon of the escape of electrons [4] and ions [8] can be important in the
dynamics of a further development of the quasi-stationary states, and for the
resulting current-voltage characteristic. However, in reality, there obviously
exist other mechanisms responsible for a deceleration of fast particles that
go beyond the framework of the interactions with the ionic-sound waves discussed

here.

Therefore, if the other possible mechanisms are considered, tﬁen of

19
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course it must be expected that the phenomenon of escape will be of little

significance.

Now several words will be said about a possible situation when the

term %“% 6’\&.{ is important. A situation of this type can in principle be
achieved in the magnetospheric turbulent currents which were mentioned in the

introduction.

It is well known that the arcs of the aurorae often have the form of
fairly thin surfaces of thickness on the order of 1 km near Earth, and in

length amounting to hundreds and thousands of kilometers [32]. Therefore, in

L=

certain cases the term
- X7

?7' }sf: can be important in explaining certain geo-

physical phenomena.

Thus, let us assume that a linear generation of ionic-sound plasmons in
the plasma is mainly compensated for by their escape across the boundary of

the turbulent plasma:

W $ .
KnYre VN‘K?- Nn(ﬂq")‘a%“z ,\(" “‘N (2.14)

and thenY{'z Xl‘;l ' <& YQ,= X:e_s:‘:"- m;u'- %'

is insignificant in the balance of N ).

€1

nonlin

In this case, however, the level of turbulent énergy is determined by the

equation of the equilibrium of forces acting on the ions (i.e., in this
process Yzon,lln is important), i.e., LUy = hTe_ LE /v t‘m\’\‘&)‘/? . For

X .
E «EK the current-voltage characteristic is obviously planar as before
(since\,{, << Y{L r:).,

Although the case of very large Q_svt\ﬂ( has not yet been studied in

detail, it is reasonable to assume that a stable state for which simultaneously

20

/23



the Conditions (2.14) and the conditions of the equilibrium of forces acting
on electrons and ions (2.1), (2.2) can be stably satisfied, is scarcely \

possible.

It can be expected that generally speaking there will not be turbulent

stationary states of current plasma when the relative role of the term

'%—“-é. v 3 v is enhanced, i.e., the waves will not escape the turbulent region.

To this it must be added that obviously at the boundary of a "tube" of a
turbulent current where the term %%3" “S‘ is always important, the average

current velocities of electrons and ions may be much higher when the processes

at the boundary are nonstationary.

Development of a turbulent nonstationary process at the lateral boundary
of a current tube in space, as we assume, takes place during decay of the
aurora when — because of the groove instability -— the luminous surface of
the aurora becomes thinner, forming wrinkles, "draperies", increasing the
relative surface of current plasma, and, consequently, the volume of the plasma,

where the term describing the escape of plasmons'bm VNK is important. 1In

this connection a sharp burst of ultralow-frequency waves and the current

takes place cfuring decay of aurora.

We must emphasize that the criterion of a turbulent quasi-stationary

state may be written in the form ¥ > es . Thus when
nonlin :
)\“- (2.15)
vrr R

there a breakdown o_f the turbulent quas1-stationary state occurs because of the

escape of plasmons. The last condition can also be written as

E/\/BrrhT,_ : ¢ z; (2.16)
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If, as an example, we take in the region of aurora a ~ 2.104 cm, Q)QJ QJQZ
thenlq_/q ~ 1072, In this case decay of the turbulent current, accompanied.
by a short nonstationary phase of a free acceleration of particles in the

» %

electric field, will occur for E av 0,2 £™", i.e., in the plane region of

the current-voltage characteristic.

3. Modern Theoretical Concepts related to a

Plasma in a Strong Electric Field

We proceed now to survey modern theoretical notions about behavior of
a plasma in a strong electric field.

First of all it will be noted that the case E’.<_'E‘4—— when the constant
velocity of the electron drift relative to ions is a result of braking — was
studied a long time ago, and the corresponding theory has been presented in

numerous monographs and textbooks (for example, [13, 14, 15]).

Under the condition T > E ¥ an anomalous large resistance of a non-
isothermic plasma was observed many times experimentally in the electric field,
i.e., the elepitrons were not freely accelerated [18, 20]. To explain this
phenomenon a number of authors have developed a nonlinear theory which implies
that the anama;lous resistance of a plasma is a consequence of the scattering
of electrons'b;y ionié-sound noise of great amplitude, i.e., it occurs during

collective interactions [23].

As already indicated in the preceding section, in relation to the ionic~
sound noise a nonisothermic plasma (Te o> T¢) is unstable if the velocity is
greater than the velocity of the ionic sound. According to [4, 11] the problem
under consideration can be described by a system of equations for the electron
and ionic distribution function Q.q' :\. 4" and for the mean square of a compoment
of the Fourie? potential of the ionic-sound no:n.se\\g\‘_\a (or the dens:.ty of the

number of the ‘ionic-sound plasmons N'&)
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The starting system of equations, according to [4] has the form

@1§L 2. ’Qg;-==~<§L- D N (3.1)
BETRELST 4 oy

Duye it Jrany e T (0-29)dT, D

e =t BRI SE,

(3.4)

where

IR BT EERE I R ST
STYS LSRR\ S I AR %5
oML ek ‘19‘? b g Mo ! MY

-

The starting system of equations does not take into account pairwise
collisions. The velocity distribution of electrons is assumed to be close to
the Maxwell distribution. The external magnetic field is zero; the magnetic

field of the cﬁrrent is negligibly small.

Here %.Li?lﬁa is the electron distribution function,‘ﬂ);? is the
diffusion coefficient of electrons by ionic-sound waves, ¥« is the increment
__References [4.9] when
considering the time-dependent problem do not take into account the time

dependence of the ion distribution function. Thus the system, (3.1) - (3.4)
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describes the prbcess of electron deceleration by ionic-sound waves for -\-,' <‘b°
= Vmﬁ;;x~/q&fﬁ5(i,e., up to a time when the ions reach a velocity equal to theb'
velocity of sound 'U';'V=_C‘~'\’;‘ (e E/N)'t_h = C).

!

As we can see from the equations, a buildup of waves with parameters W
and ¥& is achieved with the help of resonance particles whose velocity in the
direction of the wave vector is equal to the phase velocity of the wave
W = WS, The variation of the eléctron distribution function is related
both to the presence of the electric field, and to a deceleration by the ionie-

sound noise.

If the electric field Eois 'applied initially, the electrons begin to
accelerate, and és soon as their velocity becomes greater than C5, ionic
sound instability begins to develop: initially exponentially, and then the
increment must become zero since the work done by the electric field on the
particles of the:plasma does not increase faster than-&z, and in the final
analysis the energy of oscillations is obtained from the work done by the
field.

The first initial stage of instability development, which is most
difficult to-solve analytically, was investigated in detail by Field and
Fried [9] who used a computer. Their paper shows that the problem is essen— '
tially not one-dimensional, and although the propagation of waves, parallel
to the applied f%eld, plays an important role initially, as time goes on the
waves begin to propagate primarily at finite angles with the abaxis along ) /21
which the electric field is directed. 'In other words, the diffusion described
by Equation (3.12 occurs basically at an angle in the velocity space.
We shall give the computer results from [9] for the time-dependence of

the mean velocity: /
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N N
— Eo/Ep= 100409

Figure 3
. From this we see that the mean velocity and the current attain a maximum,

and the heating of electrons is seen to continue afterwards.

Qualitatively this type of velocity behavior can be explained by the fact
that the diffusion coefficient D in the velocity space increases sharply up
to that time in the velocity regionV *=- 0,

The second stage of the process was studied in.detail in [4] on the basis
of an assumption;about the existence of an "almost quasi-stationary state"
when the force of dynamic friction does not permit a large portion of the
electrons to accelerate freely. In the same paper a solution was found for

the starting system of equations, corresponding to a state in which the waves
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are stable for all angles®' » ®/2 ( ¥g,0' <), and the increment Y‘( o' =0
forw/2 % ©' % .0. The wave distribution function NK‘B aw; K"\\j‘\z/Sﬂ‘
is approximated by a formulan,g = f‘(e 8'(_\('»4(,) ,» where Mo is determined by
the conditions S(K.’S)-‘-*O and % ((M°?? ).‘;—-O for the angles O which are

not very close to zero. However, for angles © close to zero there are no
stationary solutions, and in this connection the important result was obtained
that the energy of the ionic-sound waves increases proportionately to the time
W a Q.'E A detailed analysis of the role of escaping electrons has shown
that their contribution to the increment is insignificant. The solution
obtained corresponds to an "almost constant" saturation currentj~ "'hoc.s

The work of the electric field during a time

W\e. “’\LQQ_, - < mecz\’m:'
_W\‘ e E,‘ "’th<"€. t E. mt

(i.e., until the ions achieve a veloc:Lty’U‘/ o~ C' o V 7 ;) 1s expended /29

on an increase in the energy of oscillations and the heatlng of electrons.

Furthermore (within the framework of the theory) due to their heating
the electrons should start escaping, and the current should increase with the
time. The density of the oscillation energy increases proportionally to the
'time, and for ~t;- =44 it reachesnle.

We should emphasize once again that within the framework of [4] the iomic~
sound instability limits growth only in the time % <."t¢ s and a constant
segment of the curfent-—voltage characteristics occurs also when +t <'t. .
Furthermore, the solutions under consideration — which are not s strictly
speaking, quas:L-statlonary, because of escaping electrons — are valid only
if the time that it takes for an instability to develop ,1’. l/)’. "C‘*’ CS/‘Y&).‘

is less than'tc, i.e.,
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Furthermore, among the most important papers that develop the theory of
plasma turbulence in a strong electric field we must include a paper written
by Kovrizhanykh [7].

Referencei[7] takes into account both the interaction of electrons with
the ionic-sound noise and the pairwise collisions ([6] is devoted to an inves~
tigation of an analogous problem in a one-dimensional model), and as a result
obtains a corresponding analytic solution for a quasi-stationary spectrum of
ionic-sound noise. Reference [7] obtains explicit equations for the time-
dependence of the mean kinetic energies of plasma electrons and ions. The
equations implﬁ that the presence of ionic absorption results in intense
heating of the ion component of the plasma whose rate is proportional to the
value of the external field E. Since the collisions were taken into account
in [7], it was possible to find the value of the electric field below which

the number of the escaping electrons is negligibly small.

Thus, in [b]-the starting system has the form

: ?J,ﬁ'@% wb*%% %t({i._) 3.5

W @penen, o

X%tV Can

where
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Y= WTQS/Q & Ve

RO T\ M) (o) T

describes the attenuation of sound due to ion-ion collisions [21],

4Tre:’* W L/m"v‘

is the frequency of electron-ion collisions.

The expressions':D,,L@‘ and ’\(,"S, are defined as before by (3.2) and (3.4).
As we can easily see, here the only extra terms are those describing collisions
in the kinetic equation for electrons (3.1) and in the kinetic equation for

ion-sound pla;smons (3.3).

In contrast with [4] when collisions are taken into account there is a
quas:.-statlonary solution for the density of ion-sound noise 1\\[ (M.). We

shall wrlte these equations as given in [7]:

M(z)‘@W)B -—C-————)-S "'M“ »_ \1\( (x) , (3.8)

where X-—C.-B’;G K'Q/M

i for ib;&»xa . - . . ‘Tiv L
| <9 | XFNe Rz B 3.9
\V CX) for 1 X < Xo '-x ' ’uT -9

§

: <x)._ X (4 - Xx)z {(X Xo)LQ('z X")+3X2((")m -
( P S

oz o KILER } - 6.10

1
‘ ) (con't.
T E on next

: _‘." - m E K.S’ page)
§ Zo ‘ﬂT ,_ ?Q h/ ) Q:o.( |
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e = Set/énuweV (c)m%

}\=§-9..._._..oo Ky
Vo KA, s

R i e (3.10)
e (con't.)
oF =s{4 x(@/zs‘)(m ..mm
"S_ = cl)$<g(c> /CGLD  '1
Here )GCQ is the root of an equation 132

'br \5 (k) w(%) a 5’(«} (3.11)

Furthermore, [7] shows that, just as in the case when collisions were not taken
into account, a plane current-voltage characteristic is valid within a certain
time interval, i.e., the resistance of a plasma turns out to be directly pro-
portional to the applied field. 1In addition, within a certain quasi-statiomary
stage there occurs an increase of the electron and ion temperatures, which
results in an increase of the number of escaping electrons, and a cessation of
. the stationary state which is then no longer described by the system of

equations given above.

It should be emphasized that neither in [7] nor in [4] was the deceleration
of the ion gas by the ionic-sound noise ever considered, and consequently, the

results obtained in [7] are valid in all cases for the time %igﬁfoo

‘The next step in development of the theory of turbulent plasma in a

constant electric field was [8] which is a continuation of [71.

Reference [7], because of its neglect of the anisotropy of the ion

distribution function, strictly speaking, contains valid results only for the /33
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case when frequency of ion-ion collisions is so high that the principal role
is played by the collision absorption of waves, rather than Cherenkov absorp-
tion. Reference [8] generalizes the results obtained in [7] to include the
case when not only the collision absorption, but also the resonance absorption

of waves by ions is important.

The system of equations in [8] as compared with the system (3.5) - (3.7)
additionally includes the kinetic equation for resonance ions and the equation

for the mean energy of thermal ions.

In the paper equations are derived describing the processes of heating
the electron and ion plasma components. In addition, emphasis was laid on the
question of heating resonance ions (having velocities xJ; greater than the
minimum phase velocity of sound waves) whose detailed analysis cannot be done
without taking into account the anisotropy of the ion absqrption, and requires
a simultaneous solution of the equations for both the electron and the ion
distribution functions. The paper shows that under certain conditions (for
sufficiently strong electric fields) the process of heating resonance ions may

lead to the appearance of escaping ions and electrons of high energy.

It is necessary to point out, first of all, that when solving the problem
in [8] and that stated in [7], the nonlinear interaction of waves among them—
selves was compietely neglected, and the solution for the wave spectrum was
assumed to have the form (3.8), that of a Eﬁ function. In addition, the

uniqueness of this type of solution was not shown.

Secondly, the plane current-voltage characteristic obtained in [8], when .
the noise energy increases linearly is, strictly speaking, valid only when
, t< 3 / (pgur{}in.
Within the.framework of equations used in [8] an explanation was made of

one important fact. If the electric field sat;sfies the inequality
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E <EBye ;;\‘; cot. (3.12)

where QQ Ll é ’W-n, then the number of escaping electrons is expomentially
small; however, if the field is sufficiently high and the condition (3.12) is
not satisfied, then the distribution function will be far from Maxwellian in
the entire velocity range, and an increase of the electron temperature will be

accompanied by the appearance of a large number of escaping electrons during

a time |4 =M S /2 ECo.

An analogous assertion was also made concerning ions: for E t;?

Gwm.;,{m;_). ﬁ the escaping ions appear when ‘t~'t. £ e (WH/W‘:) s It

must be emphasized that, as a number of authors state, in reality escape may
not be observed due to mechanisms that were not taken into account in the
theory of [8] (for example, braking by Langmuir waves which in principle could

be excited by escaping electrons).

The nonlinear effects were first considered by Kingsen in [11] (however,
the kinetics of ions was not taken into account therein) who continued work
done in [4]. Kingsen assumed the existence of a quasi-stationary solution for

‘the spectrum of the ionic-sound turbulence in the form:

N—“ (91/2 ¥ 2@)1

(3.13)

Then to find _«.T E and ca. \C (_g) he used the equations

: e T e NI
E;XA'*'\('HM"'O % (K""'K““):o’

where \(A _is the linear increment, and l‘K\«u\ is determined by the equation
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“\0—4\ K (c‘r)sfa KQK?. mzn (\f"l ‘K ‘ (3.14)

with k. =, 4/)”?_ (the ionic portion of the ionic-sound dispersion curve).

It should be pointed out that the nonlinear damping, accounted for in [11],
is responsible for the transfer of momentum to ions, and thus for the station-
arity of the process (this is analogour to [8], where "collision' damping was
responsible for statiomarity). One of the important results obtained in [11]
is the conclusion that for any initial nonisothermicity a certain "wmiversal"

ratio of temperatures is established in the current plasma:

:-— ,aiiL, 2&[ m(mjhl o

o
L

Reference [11] estimates the limit of applicability of the theory developed

in [7, 8] when the quasi-stationarity is achieved as a result of collisions:

Loy kl@ VRl e

-

i.e., for h )»2 : 108 Te /T,_ is several hundred which can of course /36
hardly be the case under stationary conditions in the magnetosphere of interest

to us now.

There is still another effect which in principle may be responsible for
a transfer of momentum to nonresonance ions, and consequently, for statibnarity.
This is displacement of phase velocities of ion-sound waves due to a weak
inhomogeneity of the plasma, discussed in [1l]. The essence of the effect is
as follows. In the quasi-classical approximation, whenv (2’1’}. ‘:’b‘: ><<- X: s
i.e., when the time during which an instability increases is Vconsiderably less
than the characteristic damping time related to the inhomogeneity, the distri-
bution function of the plasmons must satisfy Liouville's equation (see, for

example, [22]):



'Of\f '3“’ t\CVCn LA =2K\\f (3.17)
.’D‘h'

The last term on the left is related to the faet that the plasmon frequency in
the quasi-classical approximation is constant, and in that connection the wave
number of plésmons propagating in an inhomogeneous plasma changes. In parti-
cular, (3.17) implies

%R0 = comt

We thus find that a plasmon proﬁégating along the density gradient, gets /37
"redder", i.e., its wave number decreases, and the principal damping mechanism

for a plasmon is a weak damping by electrons. Conversely, plasmons propagating

in a direction where the density decreases, suffer an incfease in the wave

number 4, and rapidly enter a region of 4 such ﬁhat a strong damping by

resonance ions is present there. An analysis performed in [11] has shown that
plasmons in an inhomogeneous plasma, emitted at practically any angle, later

return in a direction opposite to the density gradient, and during a time

~ w.a./w‘,.. enter a region of strong damping. ‘(Here 7“/9\ :-:—..3:‘).

-

Thus, a weak inhomogeneity in a plasma can be roughly accounted for by
an increment \K"vCO?c/ \Sé, and this effect, just like nonlinear scattering

by ions, can in principle assure quasi-stationarity.

We shall giye a criterion for the case when the effect of an inhomogeneity

is more important than nonlinear effects:

(3.19)

Now we shall briefly discuss another nonlinear process which may play an

important role in the establishment of a quasi-stationary turbulent state in
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;
a plasma with a current. The results obtained in [24] provide a basis for

assuming that a disintegration of ionic-sound waves into other ionic-sound

waves ('S ‘9'f‘*-3" Z may be such a process. This process is forbidden

under the conditions of a weak nonlinearity [22], when in computing the pro- /38
bability of a disintegration one uses the laws of dispersion, obtained in the
linear theory. However, when the nonlinearity is not very weak, corrections

to the dispersion law, connected with the presence of intense turbulent pulsa-
tions of ion sound result in the possibility of disintegrations of a single

ion-sound wave into two.

The maximum increment S-I:- g+ S‘";of a disintegration, according to [24],

N S )
YIS e K (3.12)

with

A rough estimate of the form of the spectrum of ionic-sound waves in a quasi-
stationary state gives \NA( ~ A.(ll in the region i, '« /N g. The disintegra-
tion process of ionic-sound waves will always prevail over the process of a
nonlinear scattering by ions in the quasi-one-dimensional case studied in [24]
(the wave vectors ére contained in the cone'® « {). However, in a three-
dimensional case the process § T;,5‘.;.3"@1ays a significantly lesser role,
since the scattering at large angles occurs only in a relay-like fashion
(i.e., by means of a large number of scattering events involving small scat-

tering angles).
One may expect that the disintegration process 3§ ~;>s'}-3“_will lower the

level of ionic-sound waves, transfering them into a region of absorption by

ion-ion collisions [25]. By taking account of processes of this type, the
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conductivity of a plasma in a strong electric field (especially for 'E >

E*% = ; 4w ‘e__ ) will be higher than according to [5, 1l1].

We shall mention still another possible nonlinear process occurring when /39
there is an extiernal magnetic field acting on a plasma. This process may have
an important influence on the form of the spectrum of the ionic-sound waves in
the region Nﬁ §-4/<Ae, The process we have in mind involves a decomposition
of the ionic-sound waves ( § ), into ionic-sound waves ‘(.S‘ ); and electronic-
cyclotron longitudinal waves (Q) whose dispersion is a;).mmuwQ, S -~ Sy <.
Under the conditiomns C*Dp. W 4 ‘*’ne, according to [33], this decomposition

has the increment
8¢ N g K 0ped
X }&' A Wpe (3.13)
‘ 5 NT 647° B Ouy /

‘ <.

Here, according to the analysis, the decomposition is quite efficient for

ionic-sound waves with K ~ 4 /} <,

A rough estimation of the spectral form of the ionic-sound waves in the
region K ~ (/ ke, taking account of such decompositions [25], results in the

express1on -

WK ~ “/{K . (3.14)

The estimates given here lead us to assert that all these effects must be taken
into account when solving a specific problem involving the ionic-sound insta-

bility in a current plasma.

' § 4. Turbulent Electroconductivity in an /40

Isothermic Plasma

Thus far we have considered turbulent electroconductivity in a nonisother-

mic plasma, where the ionic-sound instability is possible. Now we shall
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consider the opposite case .TL.Eﬁ‘rc which in practice occurs usually at the
very beginning of the process involving the passage of a current due to an
external field ©. In this case the electrons will be freely accelerated
until their velocity becomes greater than their thermal velocity. This marks
the beginning of development of a hydrodynamic instability of electron-ion
oscillations whic§ decelerates the drift of electroms, the latter process
being discussed in [3]. Before we make a detailed discussion of the results
of papers devoted:to this case, we shall note that in.these papers plasma

oscillations are analyzed within the framework of the so-called adiabatic

approximation, i.e., when the acceleration of electrons is neglected. This is

permissible only for not very large fields.

In the case

KE, > 4R n.a\lg% - .

a harmonic with a wave number / passes the instability region without a_
substantial growth ("whistling through"). Thus, if ’E >‘Emw‘= 2bLnee
Jﬁ;:ﬁ;g; where 14.is the dimension of the plasma, instabilities will fail to
‘ develop. Reference [26] and also [27] show how oscillations develop for the

intermediate case involving a passage from the adiabatic to the nonadiabatic

theory of linear oscillations.

Now we shall proceed to discuss in detail the results pertaining to
turbulent electroconductivity in an isothermic plasma ;El = T,. It will be
noted that the results discussed below may also qualitatively épply to the

case of a large number of escaping electrons in a nonisothermic plasma.

As we know, as soon as the velocity of electrons relative to ions exceeds

the thermal velocity, small fluctuations will grow with time in the plasma.
The fluctuations which increase as the time goes on derive their energy from

the electrons, thus decelerating them in the process.
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Buneman [3] was the first to describe the mechanism responsible for a
growth of appreéiable concentrations of charged particles out of small fluctua-
tions which is followed by a deceleration of the initial electron drift. His
model is essentially as follows. The field which gave rise to the original
electron drift is assumed to be turned off, so that there remains only the
field of fluctuations Egya The paper discusses only nonrelativistic velocities,
the plasma is assumed to be infinite in extent, and the ion-electron collisions
are neglected. If the thermal distribution of velocities is neglected, then,
as we know, we have the following dispersion equation for perturbations in a

system involving two colliding streams of electrons and ions

s K :
BTN L*ﬁﬁi_,_ /l (4.2)
W (w1 ) -

Its solution is = + Col, where CUQ is the frequency, and ol is the /42
LO nd B , J Loz
growth increment, corresponding to a given (Et?,}* being the wave vector, and

A the electron drift velocity. The growth increment has a sharp maximum - -
o = Wpe /)8 (VE /277D, (peak) at Wpa =W of width &(R3) ~3wyekm)

which corresponds to 0,43 &J?n for a hydrogen plasma.

This means that, if thermal velocities are neglected, the fluctuational

perturbations in the plasma will increase primarily near j&k-:(aJszﬁx.

The question: what is the value of, the drift at which the mechanism of
the growth of plasma oscillations begins in the stream for Eﬁjﬂ;comparable
with the directional energy of electrons, is solved by Buneman b& using ‘a
generalized integral dispersion equation which takes into account the Maxwel-

lian velocity distrubution of electrons and ions.

s.,--—n»—

) W - 'Z M'?» (4.3)
% T RNCS /M}‘/Z o &

e

e S
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where

A ) Wpsy ‘ "
W N e e (N
Plotting S @/}LT/M)‘?- and - N')‘(Azﬁ(a ’@XT/V\A)")’ - expressed in terms
% dat t
of elementary functions, and the function SQZQO\Q‘ in a complex domain, 43

Buneman extracted from the diagram thus obtained the following numerical

results:

1) At any drift velocity only those fluctuations may increase whose

wavelength is greater than )\9‘ ()\; is the Debye length).

2) An increase in the fluctuations will occur if the drift velocity is
greater than }’?_:H'EH‘T:«Q D‘*“Iﬁl'\&:ﬂ/t‘/‘:ﬁ; i.e., the kinetic energy of drifting

electrons must reach 0.90 :.?:‘[w‘,fin order for the growth to begin (and not greater

‘than gT, as is usually assumed).

38

For wavelengths less than §‘.3?Aé and drift energies less than 0993@_, the
Landau damping dominates over the mechanism involving the increase in tlie

amplitude.

Then the question was discussed: from what level of the fluctuation

intensity does the process of their growth begin?

The heat in the plasma is distributed both among & N - degrees of
freedom of electrons and ions, and among "free' plasma oscillations. The

number of degrees of freedom in undamped plasma oscillations is estimated as



follows. Let us assume that before the acceleration due to the electric field
takes place, oscillations at all wavelengths occur in the plasma. In view of
the presence of a sufficient number of electrons with velocities & £ Z>'0';re_ yin
the Maxwellian velocity distribution, the wavelengths of length )\ < 27-%
Ute/Wpe  will be subject to Landau damping whose physical cause is the reso-
nance between the phase velocity of the wave and the velocity of an appropriate
group of electrons. Wavelengths of greater length will not in practice be
subject to Landau damping, since the number of particles with velocities

'\Y '>'3\.)'1-°_‘ in the Maxwellian tail is negligibly small, let alone the fact that
a continuous model of a velocity distribution is not applicable in this region. /44
Hence, plasma oscillations with the phase velocities ‘_\To? >j3.\$ré‘ may be con-

sidered to be free modes, which permits the wave numbers

K< Ao,
SAe
On the other hand, if one considers a plasma occupying a cube of side
cm, the wave numbers should be multiples of 2({_/_L4; cm—l, i.e., in the f—space
of wave numbers, the points that correspond to discrete ‘¥ must lie at dis-

tances @n/};) from each other which gives

3.8 Ly \"3!

4 (ANL L amit (e

IV %
| Q—*’ L )

as the number of free oscillators each of which carries an energy <1

»

i

(kinetic and field energy).

If one assumes that in practice the fluctuations with V\’:‘Cor._/'u will

increase in the interval

L Rac T
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(for H), then from the entire AL -sphere one must separate out only a layer of
thickness & A& and a radius approximately equal to 4 /’L),a', since the distance
from the center of the /K -sphere to a spherical layer taken approximatély as

a disk is ‘,‘:’q{:ﬁ- <<-vg /3 A (the latter being the radius of the A/., -sphere), since
QA ))fn . -

‘ In the disk under consideration, in the ‘_»;C-space there are (r&.«/g )\";)
(4 /2"4')3_ free modes, each with an energy RT;e /45

A
Hence, the energy of fluctuations capable of rapid increase is 3’%‘ XT

Gavys
The ratio of the energies of fluctuations, capable of amplification, to

the energy of directed motion (per unit volume)

_ Sk =T / \\[
T8 Gy M‘

gave for hydrogen (W pe /944 h) P 1.e., about 0.6 -10-% for a "typical"
example N ~ . 101“.5: cm 3, MU/~ 250 eV,

-

Buneman assumes that the time required for full acceleration is equal to
the time that it takes for the energy of turbulent pulsations to equal the
energy of directed motion. Since the energy of turbulence increases as

» Where _oL..:. ' is the maximum value of the growth increment 0.058 Coge
for hydrogen, then the deceleration time is equal to 27.4 which is the plasma
period (deceleration time is computed from the equation J\A e#«P(’ZoLu‘t) i)

A more accurate calculation, taking into account a correction to J. depending
on A , followed by integration over d‘&; gave 28.4 plasma periods for a

"typical" example considered.

It must be noted that a calculation of the growth of turbulent pulsations

is made under an assumption ny « comsts but, on the other hand, on the basis
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of this calculation a conclusion is obtained about the decrease of 'mfas the

pulsations increase. Thus, the calculation is approximate.

Considering that the picture of initial fluctuations in the M -space
which then begin to increase is rather difficult to visualize, Buneman separ-
ately considers the process of a development of a local perturbation (one-
dimensional), having the form ‘E(ﬂ:.(zi)"&f"“_-’é(h During a time 4 ' the

perturbation will have the form:

K

\QCxt) LS [_“’“‘)&*f‘ﬂa

where ¢y (&) is the "increasing" solution of the dispersion formula.

Using the method of steepest descent, one finds the first term in the

exponent which is independent of 1‘}@. This term éssentially determines

RG]

. /3 1

»

If we consider the term quadratic in AL, in the exponent, we obtain a

factor which depends weakly on X, ‘t

146

The last expression makes it clear that the logarithm of the perturbation's

amplitude increases as (ut - 332’3 /3 s i.e., as time goes on, the perturba-

tion spreads out between its in1t1a1 position and the position X = 'ut which

is where the electrons move. As the perturbation spreads, it increases every-

where (although not equally). The peak of the perturbation moves with a

velocity {/3“)’?,{
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The origin of the coordinates in this process is never free of the
initial perturbation which means that it is impossible to use this mechanism
for a controlled amplification (of course, if ions do not move in the same

direction as electrons).

A study of the imaginary part of Equation (4.4) shows that it approaches
'OJPe X/Wf » i.e., during the course of the perturbation it is periodic with a
period 23U /W pg

During the last few periodswhen the perturbations increase (and, properly,
a substantial portion of the directed energy is converted into the energy of
fluctuations) the nonlinear effects, involving the deceleration of the stream

and an interaction among waves, become very important.

The estimation of relationships between the perturbations of velocities
and densities for ions and electrons at a frequency corresponding to the maxi-
mum increasing solution, lead Buneman to conclude that nonlinearities in the

motion of ions may be neglected.

The main effect of the nonlinear process is the tendency toward isotropy.
(In the case-of a weak nonlinearity, see [30], [12]). A fairly sharp‘spectrum
with f§“=-0JP¢/h4 , produced during a linear increase, will spread out, and
ultimately isotropic conditions will be established, and the drift emergy will

be distributed equally among all possible plasma oscillators.

In a one-dinensional case, a numerical calculation was made on a computer

that confirmed the above assertion.
Qualitatively, "turbulent" mixing occurs in the following way.

The electron layers oscillate and produce a wall of space charge which

reflects the electrons. Thus, "collective interactions" take place.
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It must be noted that the electrons recoil from their own fluctuation

fields (the ions are uniformly distributed).

The first electron wall is scattered within a short time, then it
intensifies again and causes further reflections. Some electrons that had
already been reflected once are reflected again from the second wall, and

thus are "trapped".

Other electrons have enough energy to pass all walls in both directions.

The mixing process results in the appearance of many currents.

A case which is more important in practice involves a situation in which
the drift is produced by a uniform external electric field. If, according to
the mechanism described, the energy of the directed motion is converted into
random energy, but the constant field "stretches" the drift, then the time
required for a new '"disruption" of the drift is on the order of the relaxation
time, and is equal to 2%/Wpe which is the plasma period. Consequently, the
"frequency" of the collective interactions is ""Q"a'-‘—‘ C‘-’eﬂ-/ (5 (where p,~10)_), and
the constant velocity can be found from the relation Muwee/f} =a B

Hence, the conductivity is equal to

H

Let us consider in’' more detail the case when the field of the measured quantity /49
slowly increases the translational velocity M(t—)} at the same time as the
increasing turbulent pulsations ultimately result in a deceleration and an
establishment of MU = oA

The criteriont for the applicability of the "adiabatic" theory we are

discussing is:
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The curve vg'(,g("‘) , having a maximum e wy at K’u ?wra, is replaced in rough
estimates by a "rectangular" function, i.e., the wave numbers ), near the
value @ / "M in an interval of width ©.2¥ Wpe /M have a growtﬁ increment
o&M and zero outside of the interval. |
The amplification of 1nd1v1dual wave numbers continues only as long as
A () is inside the interval b’“ OLSCOFe/'K about COP"/V . At other times

one can say that the wave number is beyond resonance.

The continuation of the amplification of a fluctuation with a wave number
4. is limited to the time b—t;a’u_/if?JM), and the fluctuation energy is
amplified by & , where

T = 2l (0. 25 (’?‘?°/*‘>e2§°‘f (4.5)
At a time "t the waves in the neighborhood of ‘v( =Wa /'“(‘L)"V“mr‘/ebt are
unstable. First waves with large A’\ become unstable, and by the time <+ = t s
all K>MWpe /e t:t« will pass through the time interval in which amplifica-
tion occurs. Thus, the minimum T =0.€ °L,~j= woa4 will be achieved by later

and the smallest XK.

The upper limit of &K is determined by the Debye length k;u;w/lé . 50
However, often an even more serious limitation yields a condition> of a&iaba—
ticity, K « -wp;zm-L... /e . . Furthermore, integrating over all wave numbers,
which result in the exponent ranging from 1 to \‘f, we shall find the total’

increase in energy.
The initial fluctuation emergy per unit volume amounts to (Sx/iR) 2T
C%‘?\Q'z which is w0 g,‘ _<;~¢ (g’t/g\.) per single electron. Using (4 5), we

can express c;&. in terms of ?ft‘,
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thus obtaining the total turbulent energy per electron:

Wrryps = Jof ¥k NCH

= 2M Goe ohu

w6n E SM\’@A <2
Ly chwy - -

) the integral is not sensitive to the lower limit, and
is equal to @XPT./ 't,z’

sie

., For hydrogen (denoting by & -‘2/&7 =e N’”“‘"\’r‘t {'

§4.6)

For large U, =

S

. the Coulomb field of the nearest neighbor in a cubic latice, and by
'\J\I the energy of interaction with the nearest neighbor), we have

Wops ShwEe™ L
Wigps =W g e .7

During that time the energy of directed motion will increase to

\M%r z@t:%)/m 393{2?1: /mol? ~

”'=Sow( }vg - ';if.

i

Q

(for hydrogen). Hence, the condition for the drift to be halted by fluctuations
is

1 -

whence,,b ~Sg.m\f20l:/t=a>

T —
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Numerical estimates show that the time required for establishment of a
constant turbulent current is on the order of 100 2“7/UJF@,f°r a wide range of

applied fields.

The estimate of the time during which the acceleration may occur without
disturbances for weak fields must be modified. Otherwise, the approximation
(4.6) is invalid for small . A major portion of the time of acceleration
may fall in the stable interval ]I%;i 2'0.§}{T, and then weak fields may not
be able to accelerate electrons to 0.9 kT without collisions. For the

electron-ion plasma, the requirement that we neglect close interactions is

‘reduced to Es> Eap‘*f@/(gk ¢¥, for — if the electrons are accelerated without

sy

collisions to FI',— thén they already are able to escape.

The mechanism we are discussing brings the "escaping" electrons to a halt

by way of collective interactions. The conductivity is estimated here as

. Thus, the essential result of Buneman's paper was to give a qualitative
picture of "electrodynamic" heating. A strong field produces drift within

" 100" plasma periods. This is followed by turbulization, and the energy of

"directed motion is converted into heat. Then the directed velocity is re-
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established, but as soon as the energy of directed motion reaches a value
corresponding to a new ''temperature", the translational motion breaks down,

etc.

Thus, the temperature (a generalization of the usual equilibrium concept)

increases, and a drift elevation of random energy never lasts very long.

A more detailed discussion of the process of deceleration of a beam of
"escaping" electrons in a strong electric field}Eémiﬁig?ge;effected by turbu-

lent pulsations was given by Shapiro [28] who used the hydrodynamic approxima-

tion.
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The initial system of equations for the problem consists of the Boltzmann-

Vlasov equations for electrons and ions and of Poisson's equation:
(4.9)

‘,'O'\.\;/fg‘;z\m’% S ‘.9\-{%_&\?}4"\;3.‘ (4.10)

We introduce the assumptions that the distribution functions may be /53

Lera-lomiee,

written as

where

NG H—A’%“&é

(4.12)
and '\[ is an arbitrary microscopic volume.
E‘ﬁ can be wrltten as
:E-*G‘ 1) 5_(2 G—) &%Rm * S’.“.Gc) Ay szz.) vl %.13)
Using (4.11) and (4.12) it was found in [28] that
T T, o T (4.14)

Vb T T ‘
‘. _9-_ ,‘: =

’c)‘t
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‘ . . 3,8 Ao .
and, furthermore, multiplying this by YYWW' "0~ and integrating over the
velocities, the equation for the translational momentum of electrons and ions

in the plasma is

—

s e VB,
. \(/\ -—SQQCQ\—D

(4.15)

In discussing plasma oscillations, Shapiro used the usual dispersion /54
equation for the case of a constant drift which is applicable only when the
adiabaticity condition is satisfied

’\A << C‘Q ‘.\)“o . (4.16)

The entire discussion assumed the condition of linearity of oscillations

e_EK /m Co 'u << 4 (E'g\ is the amplitude of oscillations with a ‘wave number
XK.

Furthermore; Shapiro made an approximate calculation of the decelerating.

force

~ - .=-a<n E> -———S}t “ﬂ a7 (4.18)

using the hydrodynaﬁic equations of motion, continuity, and Poisson's equationm,
as well as the dispersion equation (4.1) which gives a complex frequency of
oscillations, Co=(% (the increasing solutions are used). The initial ampli-

tude of oscillations was determined from the condition

\IC“ /81\ = 'SQ—Tm . \ (4.19)

As a result of laborious calculations, an equation was obtained for the

translational momentum in the form
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where

L
oy @ S oy =%
= Taen ?E.E,,T__wfa 9 Lo s,

"a + 1s determined from the equation oL (\a)- o, P (D-—c.%' is the solution
of the dlspersmn equation (4.1).
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An approximate integration of Equation (4.20) for the hydrogen plasma
gives ’

'Po —-.-Q’m {"C' (\m , (‘é{> A’C"""Yfﬁ: ]} (4.21)

( OLQ =0,04U) forli-'.

< T £, where </Wpa is the time when the
maximum momentum is achieved. L

From the above expression it is clear that the electron gas is initially

accelerated linearly with time, and then it begins to be decelerated by inter-
actions with turbulent pulsations.
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The maximum momentum of the electron flux is attained at a time

which can be determined from the equation

Te

iR /3 v e | (4.22)
J\—02\"” (M ( =) o

The maximum value of the translational electron momentum is determined

by the formula

N Bafe _A (44 S B:-{h.‘i‘n
P XNM ng < a\(& —QOIT‘.B &f‘ (4.23)

. ‘e ——— - "

This corresponds to a maximum conductivity of the plasma

| 6'"' & SO (0., (4.24)

e Rt e

For *:.f>-t_Q, Equation (4.20) becomes inapplicable because of an increase in
the electron temperature and a decrease of the growth increment, and an appear-
ance of nonlinear effects.

- Estimates made by Shapiro showed that at ou:tsl the energy of plasma
oscillations is much smaller than the translational energy; and consequently,
at that time the amplitudes of the oscillations are small as compared with

those at which there occurs a pronounced '"nonlinear mixing".

Furthermore, then Shapiro [29]'discusses the same problem about the
deceleration of electrons by turbulent pulsations, but directly on the basis

of the kinetic equation.

Making in Equation (4 13) a substitution

_ s
W e uF (u+=;§—gE.Aw>

RN P e e 2t s o s+ Ao ot A a5 o i 1 V
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the equation becomes

(4.25)

.%)LP?‘?,
i
Oﬁ

. X >
CLA <E~
.~ !
2t Ty
Substituting in this equation the expansions:

. . . -~ = f

B2 BlanplirT - cokobc)k )

_ = _ o .
@‘_‘: ~_%Q.: Q,K‘,&;(m:- 3 wuou:)B

and using the usual formulas of the linearized theory for oscillations in the

plasma

= NI
DWW . L[’ELWW-# - “’l

\2; 4—8__
A< W\ \A.

where CB,V = Lu.,_-LSK is the solution of the dispersion equation, Shapiro
+ Ll

[29] obtained, an equation for

. __;‘ R
WL @) i, O m{l) 26

(of the Fokker-Planck type).
;)t:{- and QW\ are rather complicated integrals, depending on the

parameters 8, A, 't

The equation for Fourier components can be solved using the method of
Then a

successive approximations, where W /o is the expansion parameter .
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fairly complicated distribution function is found which has different longi-

tudinal and lateral time-dependent temperatures:

0= & (1 5+ (GTAT ), Sl 9°(i+2,?{)

\02}\%“3/Q<_E /E)’s ‘Le't- .) S‘ 44/1 = %—3/2 % (4.27)
2 Lo\

\

(doT “-’"‘) ED.:-‘-&_/ Ne
The growth of thermal energy in the plasma is related to Landau damping.

The most interesting result of Shapiro's paper is the fact that temperature

anisotropy is achieved with increasing .

The equation for the translational momentum Pe—.-m_gwé%&,w)m is

therefore modified:

;%&% :*-,Q-th &‘\""?‘é‘ % (.Es) (‘Cs/z} ,,l (4.28)

and the maximum momentum of the electron stream is attained at g‘,'C;—";C{, which

can be determined from the equation

' c."C'
’3." Qo ( 3 a7 (4.29)
@5) S'/Z '

As before, after a time ", the entire theory is strictly speaking inappli- ‘
cable. Practically speaking for VC})TQ‘, the plasma becomes nonisothermic,

and the process is described by the theory presented in the preceding section.
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